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Abstract
The channel noise in space is nonlinear and pseudorandom so that the efficiency and security of existing group key

management schemes are constrained seriously. To solve these problems, we proposed a centralized and identity-based key

management scheme by using McEliece public key cryptosystem. In this scheme, the node identity is used as the parameter

to generate the public key. Thus the authentication can be embedded into the verification of the public key. The group key

is distributed with the protection of public key so that it can be implemented safely. Furthermore, the error correction

capacity provided by McEliece public cryptosystem can eliminate the disturbance of noise. It transfers the negative

influence caused by pseudorandom noise to an enhancement of security and increases the efficiency of the group key

distribution over the noisy channel. The security of public key generation, forward secrecy and backward secrecy is

analyzed. The performance is analyzed and compared with other schemes. The error correction capacity is simulated. The

results show that our scheme can provide confidentiality, integrity, authentication, non-repudiation, failure tolerance and

error correction with lower computation overhead and interaction rounds.

Keywords Centralized group key management � McEliece PKC � Identity-based public key � Pseudorandom noise �
Space network

1 Introduction

As the disturbance of channel noise and openness are

inherent for space network (SN) [1], the security and effi-

ciency of SN communication are challenged hugely. To

ensure integrity and confidentiality, the cryptosystem is

widely used in SN communication. Various key manage-

ment schemes are designed to manage the key of these

cryptosystems. Generally, key management plays an

important role in space network security. It provides

identification, authentication, access control, key genera-

tion, key distribution and rekeying [2] for space

communication.

The key management schemes presented in the literature

are divided into three classes [3–6]: centralized key man-

agement, decentralized key management and distributed

key management. In centralized key management, there is

a centralized key distribution center (KDC) which is

employed for controlling the whole management of keys. It

is fully trusted to generate, distribute and update the group

key. The centralized key management schemes such as

Logical Key Hierarchy (LKH) [7], One-Way Function Tree

(OFT) [8] and Flat Table (FT) [9] provide a higher degree

of security and efficiency. The major weakness is that the

dependence on KDC may cause a single-point failure. In

the decentralized key management, the large group is split

into small subgroups [10, 11] or multi clusters [12, 13].

Different controllers are used to manage each subgroup or

cluster. The failure of one group controller will not affect

the other groups since it minimizes the problem to a single

cluster. The distributed key management approach is
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characterized by having no central controller. The group

key is generated by using the threshold encryption scheme.

All of the members contribute their shares to compute the

group key. The distributed key management such as Group

Diffie-Hellman Key Exchange (GDH) and Distributed

Logical Key Hierarchy (DLKH) can avoid the single-point

failure. But they need several rounds of negotiation.

Currently, some LKH-based group rekeying schemes

are presented [14, 15] to reduce the consumption of

rekeying by optimizing the original LKH scheme. A

modification of LKH which based on one-encryption key

and multi-decryption key protocol is presented in [16].

However, it takes huge computational overhead and more

interaction rounds for initialization and rekeying. The key

management architecture of GNSS provides authentication

by using public key infrastructure (PKI) [17]. It increases

complexity since it needs the support of PKI. To overcome

the single-point failure problem, key management based on

multi-servers is presented in [18]. But it doesn’t provide

identification. The verifiable group key management

schemes without using PKI are present in [19, 20]. How-

ever, authentication and key distribution require many

rounds of interaction, leading to significant delays in key

management schemes. The decentralized key management

scheme is usually put forward for the large-scale or hybrid

network. Liu et al. [21] propose a hierarchical domain one-

way function tree (HD-OFT)-based scheme to reduce the

consumption of computation and bandwidth in LEO

satellite network. In [22], the rekeying cost is reduced by

clustering the scale of the satellite network. Both of them

extend the tree-based key management to multi-cluster so

that it can improve efficiency. But the communication

between different levels needs to be translated by different

root members. It increases the delay and node load. Jiao

et al. [23] put forward a threshold value-based group key

management for satellite networks. In the scheme, the key

distribution is implemented through choosing n satellites

that can keep long time visibility. The distributed key

management schemes based ECC are presented in [24, 25],

which using the ECC cryptosystem to provide integrity,

confidentiality and verification without the requirement of

key escrow. Another ECC-based key management

scheme is presented by Hsiao et al. [26]. But it needs the

support of PKI. The key management schemes used in

wireless sensor networks are proposed in [27–29]. A

chaotic map based key agreement scheme is proposed in

[30]. However, most of them are unsuitable for space

network since the multi-rounds of interactivity is ineffi-

ciency in the noisy and delayed environment.

In conclusion, the centralized key management schemes

are more security and efficiency. However, they either

don’t provide authentication or provide authentication by

using PKI certificates which increases the complexity. The

decentralized key management schemes are less scalable

and efficient since the message transmitting in different

sub-groups needs to be translated. The distributed key

management schemes require multiple rounds of interac-

tion to obtain the key materials so that they increase the

delay. In a word, the present group key management

schemes are inefficiency because the space network is

characterized by the long delay, low bandwidth and limited

computational resources. In other words, the group key

management scheme for space networks should be secure,

reliable, less interactive and simple. To ensure the integrity

and authentication of the group key, the digital signature

technology (DSA) based on a public cryptosystem is

employed. Because the traditional DSA requires the sup-

port of PKI, it is inefficient in space network. In this work,

the node identity of the space network and McEliece public

cryptosystem are employed to provide authentication and

integrity. It provides the error correction capacity addi-

tionally. The McEliece cryptosystem is a public-key

cryptosystem based on algebraic coding theory. A hybrid

McEliece cryptosystem using pseudorandom generator is

presented in [31] to enhance security. In 2020, an improved

McEliece cryptosystem based on LDPC is proposed in

[32]. The security is enhanced by cascading Goppa coding

and LDPC coding. But they are unsuitable for the space

key management as they do not provide authentication of

identity and error correction capacity. Furthermore, the key

size of the cryptosystem presented in [32] is much larger

than the classical McEliece cryptosystem based on LDPC

codes. It is infeasible to be implemented on the space node.

Recently, a McEliece cryptosystem based on quasi-cyclic

moderate density parity check (QC-MDPC) is proposed

[33] to against all of the attacks aimed at McEliece cryp-

tosystem while decreasing the key size. Another advantage

is that the QC-MDPC-based McEliece cryptosystem is a

lightweight cryptosystem [34]. For the same code length, it

is more secure than the McEliece cryptosystem based on

QC-LDPC. Thus we designed an identity-based group key

management scheme by using the McEliece cryptosystem,

which provides secure group key management and man-

agement of verifiable public key without a certificate.

The contributions of this paper are shown as follows: (1)

A verifiable public key generation scheme which based on

QC-MDPC code and the node ID is designed. In this

scheme, the public key is verified without a certificate. (2)

A group key management scheme is put forwarded by

using the Hash function. The method to generate, distribute

and update of the group key is designed. (3) The security of

the proposed scheme is analyzed. (IV) Compared the pro-

posed scheme with classical key management schemes in

terms of storage cost, computation cost, message cost,

interaction rounds and robustness.
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The rest of this paper is organized as follows. The

McEliece cryptosystem based on QC-MDPC is introduced

in Sect. 2. The centralized identity-based key management

scheme is presented in Sect. 3. In Sect. 4, the security is

analyzed. The performance is analyzed and compared in

Sect. 5. The paper is concluded in Sect. 6.

2 Preliminary

2.1 Construction of QC-MDPC code

We gather here a few basic definitions which are used in

this paper.

Definition 1 (Quasi-cyclic code) An n; rð Þ-linear code is

quasi-cyclic (QC) if there is some integer n0 such that

every cyclic shift of a codeword by n0 places is again a

codeword.

Definition 2 (LDPC/MDPC codes) An n; r;wð Þ-LDPC or

MDPC code is a linear code of length n, codimension r

which admits a parity-check matrix of constant row weight

w.

The QC-MDPC McEliece cryptosystem was proposed to

resist the attacks caused by the sparse of QC-LDPC code.

The difference is that the QC-MDPC is denser than QC-

LDPC, which the row weight is approximately

O
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p
ð Þ. When these codes are also quasi-cyclic, we

call them QC-LDPC or QC-MDPC codes.

To achieve a flexibility code rate, we usually construct

the parity check H as H ¼ ½H0jH1 � � �j jHm�1� 2 Fr�n
2 . Here,

n ¼ mr, m; r 2 Z�, r is the block size of Hi. Each block Hi

has row weight wi so that w ¼
Pm�1

0 wi. Thus the gener-

ator matrix G can be computed as formula (1):

G ¼ I m�1ð Þ�r

H�1
m�1H0

� �T

H�1
m�1H1

� �T

..

.

H�1
m�1Hm�2

� �T

2

6

6

6

6

4

3

7

7

7

7

5

ð1Þ

The construction of n; r;wð Þ-QC-MDPC code is as

follows:

Step 1: Choose a code length n and block size r.

Generate the vector hi 2 Fr
2 with length r and weight

w=m at random. Here, m ¼ n=r is the number of blocks.

Step 2: Generate the quasi-cyclic sub-matrix Hi 2 Fr�r
2 ,

in which the first row or column is defined by vector hi.

Other r � 1 rows or columns of Hi are obtained from the

r � 1 quasi-cyclic shifts of hi. For convenience, we use

the vector as the first column of the quasi-cyclic sub-

matrix.

Step 3: Obtain the check matrix H ¼ ½H0jH1 � � �j jHm�1�.

2.2 McEliece cryptosystem based on QC-MDPC
code

The McEliece cryptosystem based on QC-MDPC code

consists of key generation, encryption algorithm and

decryption algorithm.

1. Key generation

Step 1: Generate a parity-check matrix H 2 Fr�n
2 of

a t-error-correcting n; r;wð Þ-QC-MDPC code.

Step 2: Generate the generator matrix G 2 F
n�rð Þ�n
2

in a row reduced echelon form by formula (1).

The public key is G and the private key is H.

2. Enryption algorithm

Step 1: Randomly choose an error vector e 2 Fn
2 of

Hamming weight wt eð Þ� t. Here, t ¼ n=w is the error

correction capacity, wt eð Þ is the Hamming weight of e.

Step 2: Compute the ciphertext as C ¼ MGþ e,

where M is the plaintext.

3. Decryption algorithm

Step 1: Compute MG by using the decoding

algorithm.

Step 2: Extract the plaintext M from the first n� r

columns of MG.

3 The identity-based key management
scheme

As mentioned above, an identity-based and verifiable public

key cryptosystem without using PKI is required eagerly in

the space key management. Furthermore, it is better to

provide tolerance of single-point failure. In this section, an

identity-based key management scheme is presented which

meets the requirements all above mentioned. It consists of

the design of verifiable McEliece public key generation

scheme, initialization of the key management scheme, node

joining phase, node leaving phase and KDC election algo-

rithm. The flow chart is shown in Fig. 1.

As shown in Fig. 1, construction of the centralized key

management system for space network consists of initializa-

tion phase, node joining or leaving phase and KDC election

phase. The initialization phase includes the design of verifi-

able McEliece public key generation scheme and group key

generation scheme. The details are described below.

3.1 Design of verifiable McEliece public key
generation scheme

As the QC-MDPC code-based cryptosystem is lightweight,

it is suitable to be used in the space network for key

management. Thus we designed a QC-MDPC code-based

Wireless Networks (2020) 26:4061–4078 4063
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public key generation scheme which embeds identity in the

verification of public key so that the space nodes can

authenticate each other by computing their public key. The

detail is as following.

3.1.1 Generation of the public key and private key for KDC

Without loss of generality, we set m ¼ 2 and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

=3�w�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

. The security is increased with

the increase of w while the error correction capacity is

decreased with the increase of w. To achieve optimal

efficiency and security, weight w can be decreased from
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

to
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

=3 with the increasing of code length.

The public key and private key of KDC is generated as

following:

Step 1: The KDC randomly chooses vector hkdc0 ; hkdc1
with weight w=2. Here, w is the weight of n; r;wð Þ-QC-
MDPC code, m is the number of sub-matrix.

Step 2: The KDC constructs a check matrix Hkdc ¼
Hkdc0Hkdc1½ � by using the method in Sect. 2.1.

Step 3: The KDC computes the generator matrix Gkdc by

using formula (1) and publishes it.

3.1.2 Generation of the public key and private key
for space nodes

The generation and verification of the public and private

key for space nodes are as bellow:

Step 1: For each node i, the KDC randomly chooses a

vector si with a weight of
ffiffiffiffiffiffiffiffiffi

w=23
p

and publishes it.

Step 2: Node i generates its quasi-cycle sub-matrix Si by

si.

Step 3: Node i randomly chooses vector hi;2 and hi;3,

where wt hi;2
� �

�
ffiffiffiffiffiffiffiffiffi

w=23
p

and wt hi;3
� �

¼ w=2. Then gen-

erate quasi-cycle sub-matrixes Hi;2 and Hi;3. Since the

number of sub-matrix is m ¼ 2, the Hamming weight of

each sub-matrix should less than w=2.

Step 4: Node i maps its ID to a binary sequence hIDi
by

using formula (2). Here, the collision-free hash function

is hash : 0; 1f g�! 0; 1f g�. Then hIDi
is transformed to

decimal numbers which index the position of bit ‘‘1’’ in

vector hi;1 so that wt hi;1
� �

�
ffiffiffiffiffiffiffiffiffi

w=23
p

.

hIDi
¼ hash IDið Þ ð2Þ

The matrix Hi;1 is generated by shifting hi;1 cyclically

in column. The detail is shown as formula (3):

Hi;1 ¼
hi;11 � � � hi;12

..

. . .
. ..

.

hi;1r � � � hi;11

2

6

4

3

7

5

ð3Þ

Step 5: Node i computes its check matrix Hi by formula

(4). The private key is Hi, vectors hi;2 and hi;3 are kept

secretly.

Fig. 1 The construction of centralized key management system for satellite network
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Hi ¼ ½Hi;3jHi;2Hi;1Si� ð4Þ

Gi ¼ I Hi;2Hi;1Si
� ��1

Hi;3

� �T
�

�

�

�

� 	

¼ I S�1
i H�1

i;1 H
�1
i;2 Hi;3

� �T
�

�

�

�

� 	

ð5Þ

Step 6: Node i computes a witness value Ri ¼ H�1
i;2 Hi;3

and publishes the first column ri. Then node i obtains its

public key Gi as formula (5):

Step 7: KDC and other nodes compute and verify the

public key of node i by formula (6) and store it:

Giverify ¼ I S�1
i H�1

i;1 Ri

� �T
�

�

�

�

� 	

ð6Þ

When KDC or other nodes need to transmit secret to

node i, they encrypt the secret with Giverify . It’s obvious

that Giverify ¼ Gi. Note that Si, Ri and the sub-matrixes Hi;j

are invertible with overcoming probability since they are

quasi cycle.

The procedure of the public and private key generation

for space nodes is described in Algorithm 1. For

convenience, we use N denotes the total number of nodes.

n is code length, r is block size, w is the code weight, m is

block number, t is the Hamming weight of error vector e,

IDi is the identity of node i, Ri is witness value, Gi is public

key of node i, Hi is private key of node i, Giverify is the

verifiable public key of node i, Vectors si,hi;2, hi;3 are

randomly chosen.

3.1.3 Encryption and decryption algorithm

The message can be encrypted by the McEliece public key

through formula (7):

C ¼ MGþ e ð7Þ

Here, M is the message, e is a random vector with Ham-

ming weight wt eð Þ� t and t ¼ n=w.

When the ciphertext is received by nodes or KDC, they

compute MG by the decoder and extract the plaintext M

from the first n� r columns of MG.

The example of verifiable public key generation is

reviewed in Sect. 3.6.1.
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123



www.manaraa.com

3.2 Initialization of the key management
scheme

There are some parameters need to be initialized before the

proposed key management scheme starts to work. At the

initial phase, the parameters of QC-MDPC code such as n,

r, w, m and t should be set. Then the public key of KDC

and space nodes are computed. Finally, the group key is

generated and distributed. The procedure is described in

Algorithm 2.

After receiving the encrypted group key, each node

decrypts it and obtains the group key DEK. The algorithm

is validated in Sect. 3.6.2.

3.3 Node joining phase

When a new node i joins the network, it needs to send a

request to KDC. After KDC and other members verify it,

the rekeying is triggered. The procedure is described in

Algorithm 3.

4066 Wireless Networks (2020) 26:4061–4078
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The opportunity of rekeying usually is periodic. When

this is a request for joining or leaving, the rekeying oper-

ation is triggered and the timer is reset. Otherwise, the

rekeying operation is implemented periodically. The

example of rekeying in the joining event is reviewed in

Sect. 3.6.3.

3.4 Node leaving phase

If a node is leaving, it should send a request to KDC. Then

a rekeying operation is triggered. The procedure is

described in Algorithm 4.

Wireless Networks (2020) 26:4061–4078 4067

123



www.manaraa.com

Since the public key of any node is recomputed for

different time and different group, this is no need for

revocation operation in the proposed scheme. The example

of rekeying in the leaving event is reviewed in Sect. 3.6.4.

3.5 KDC election algorithm

The proposed scheme is tolerant of the single-point failure

by using the verifiable McEliece public key generation

mechanism. When the KDC is failed, the group member

can elect a new KDC. The procedure is described in

Algorithm 5.

By this procedure, the new KDC can be elected so that

the single point failure can be avoided absolutely. The

example of the KDC election is reviewed in Sect. 3.6.5.

3.6 A numerical example of the proposed
scheme

In this section, the proposed scheme is validated by taking

a data set as an example. The generation of verifiable QC-

MDPC code-based public key, the initialization of the key

management, the rekeying in joining event, the rekeying in

leaving event and the KDC election algorithm are validated

in this example.

3.6.1 Validation of the verifiable public key generation

To validate the output of the public key generated by using

the McEliece cryptosystem based on QC-MDPC codes, a

real data set is chosen to be used as an example. In order to

describe the example expediently, a small code length is

selected. Let n ¼ 32, m ¼ 2, then w ¼
ffiffiffiffiffiffiffiffiffiffiffi

nlogn
p

¼ 7,

wt sið Þ ¼ 1, wt hi;1
� �

¼ 1, wt hi;2
� �

¼ 1, wt hi;3
� �

¼ 3. In this

section, the public key generation and private key gener-

ation of KDC and group members are reviewed by an

example.

1. Public and private key generation for KDC

Suppose that KDC chooses vector hKDC;1 and hKDC;2
randomly, where hKDC;1 ¼ 0000010000101000 and

hKDC;2 ¼ 0000000000000010. For convenience, the binary

vector can be denoted by a generator polynomial such as

4068 Wireless Networks (2020) 26:4061–4078
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hKDC;1 xð Þ ¼ x10 þ x5 þ x3. The private key of KDC is

shown as formula (8):

HKDC ¼

0 0

0 0
0

0
0

1

0

0
0

0

� � �

0

0
0

0
1

0

..

. . .
. ..

.

0

0
0

1

0
0

� � �
0

0
0

0 0

0 0
0

0
0

0

0

0
0

0

� � �

0

0
0

0
0

0

..

. . .
. ..

.

0

1
0

0

0
1

� � �
1

0
0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð8Þ

The KDC computes its public key GKDC ¼ ½IjGKDCright
�

by using formula (1). Here, the corresponding generator

polynomial is gKDCright
xð Þ ¼ x13 þ x11 þ x6. The detail is

shown as formula (9):

GKDC ¼

1 0

0 1
0

0

0

0

0

0

� � �

0

0
0

0

0

..

. . .
. ..

.

0 0 � � � 1

0 0

0 0
1

0

1

0

1

0

� � �

0

1
0

1

0

..

. . .
. ..

.

0 0 � � � 0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ð9Þ

2. Public and private key generation for space nodes

The public key generation for nodes of the space net-

work is described in algorithm 1. To validate the output of

steps in algorithm 1, we set the identity of the first node is

ID2 ¼ 1000000002. Its hash value of identity hID2
¼0

7450fdf04f36 5909db63d481f90fe79a’ is computed by

MD5 algorithm. As the code block size is n=m ¼ 16 and

wt hi;1
� �

¼ 1, we just need to map ID2 to one decimal

number which is smaller than 16. So we transform the hash

values hID1
into a binary sequence and extract the first 4

bits which denote as HID2 = 1011. Then convert it to a

decimal number 7 which denotes the index of ‘1’ in vector.

Therefore, the vector generated by the identity of the node

is h2;1 ¼ 0000001000000000. For convenience, the binary

vector can be denoted by a generator polynomial

h2;1 xð Þ ¼ x9. By using formula (3), we can obtain the

matrix H2;1 as formula (10):

H2;1 ¼

0

0

0
0

0

0

0

0
0

0
0 0

1 0

� � �

0

0

0
0

0
1

0

..

. . .
. ..

.

0 0 � � � 0

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

ð10Þ

If H2;1 is not invertible, extract the next 4 bits from the

binary sequence which transformed from hIDi
. Then

regenerate the matrix H2;1 until it is invertible. Obviously,

the matrix H2;1 is invertible in this example. Suppose that

node ID2 chooses its private parameters h2;2 ¼ x14 and

h2;3 ¼ x5 þ x3 þ x2. The parameter s2 ¼ x11 is assigned by

KDC. By using formula (3), we can obtain the corre-

sponding matrixes. All of the vectors are randomly chosen

and constrained by the specified weight. Furthermore, all

the matrixes generated by the vector should be invertible.

The node computes R2 and publishes its witness value r2
with the generator polynomial r2 xð Þ ¼ x6 þ x3 þ x2. Thus

we can see that its public key is G2 ¼ ½IjG2right �, the gen-

erator polynomial of G2right is g2right xð Þ ¼ x14 þ x2 þ x. The

detail is shown as formula (11):

G2 ¼

1 0

0 1

0 0

� � �
0

0

0

..

. . .
. ..

.

0 0 � � � 1

0 0

1 0

0 1

� � �
1

0

0

..

. . .
. ..

.

0 1 � � � 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð11Þ

Its private key is H2 ¼ ½H2;3jH2right �, where the generator
polynomial of H2right is h2right xð Þ ¼ x4. The detail of H2 is

shown in formula (12):

H2 ¼

0 0 � � � 0

..

. . .
. ..

.

0

0

1
1

0

1

0

0
1

1

� � �

0

1

1
0

0

0 0 � � � 0

..

. . .
. ..

.

1

0

0
0

0

0

1

0
0

0

� � �

0

0

0
0

0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ð12Þ

The KDC and other nodes can verify the public key of

node ID2 by the public information such as s2, h2;1 and r2.

They compute and store the verifiable public key

G2verify ¼ ½IjG2verify r
�. Here, the generator polynomial of

G2verify r
is g2verify r

xð Þ ¼ x14 þ x2 þ x. Obviously, G2verify

equals to G2.

3.6.2 Validation of the initialization

In the initialization of key management, the KDC generates

a new group key. The new group key is encrypted by using

each nodes’ public key and sent to the corresponding node.

The procedure of initialization is described in Algorithm 2.

The initialization of node ID2 is validated in this section.

Let the parameters used to generate the group key are

a1 ¼ 1001100100110000 and a2 ¼ 1100110100010110.

Note that the length of a1 and a2 should better larger than

128. For convenience, the length of a1, a2 and group key
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are set to be 16 bits in this example. The parameters a1 and

a2 are cascaded by KDC and used as the input of MD5

algorithm. The first 16 bits of the MD5 value GK ¼0

5bf1e387adf1fe44cbb52edeb4ac9614
0

is used as the

group key. That is DEK ¼ 0101101111110001. Then KDC

encrypts DEK by using G2verify . Thus the cipher is C ¼
DEKpk2 þ e ¼ 01001011011100011100001001100000.

Here, the encrypted group key is DEKpk2 ¼ DEK�ð
G2verifyÞmod2, the error vector e ¼ 00010000 10000

0000000100000000000 is chosen randomly and wt eð Þ�
n
w ¼ 4. After received the cipher C, node ID2 obtains

DEKpk1 by using the decoding algorithm and extracts the

first 16 bits. The result is 0101101111110001. Thus, the

group key is distributed correctly and safely.

3.6.3 Validation of rekeying in joining event

The procedure of rekeying in joining event is described in

Algorithm 3. In this section, the output of steps in Algo-

rithm 3 is validated. When a new node is joining, the KDC

randomly chooses a si for it. The new node sets its hi;2 and

hi;3. Then compute its public key, private key and the

witness value. The witness value ri is published to all other

nodes. Here, we set the node id is ID3 ¼0 100000000030,

s3 xð Þ ¼ x9, h3;2 xð Þ ¼ x4, h3;3 xð Þ ¼ x11 þ x4 þ x2, h3;1 xð Þ ¼
x5. Thus, we can obtain that r3 xð Þ ¼ x15 þ x13 þ x6, G3 ¼
½IjG3right � with g3right xð Þ ¼ x15 þ x8 þ x, H3 ¼ ½H3;3jH3right �
with h3right xð Þ ¼ x4 and G3verify ¼ ½IjG3verify r

� with g3verifyr
xð Þ ¼ x15 þ x8 þ x. The KDC chooses new parameters

a1 ¼ 1000000100110011 and a2 ¼ 1001110101010110.

The new group key is DEK ¼ 0101000110100010. The

KDC encrypts DEK by each nodes’ verifiable public key

and sends it to them. As the rekeying of group key for node

ID2 has been validated Sect. 3.6.2, we validate the rekeying

in node ID3 this time. The KDC encrypts the new DEK by

using the public key G3verify and a new error vector e ¼
10000000100000000000000000000100. The received

ciphertext in new node ID3 is C ¼ DEKpk3 þ e ¼
110100010010001 00001010011100110. After the decod-

ing, the new node obtains the encrypted group key DEKpk3 .

The value of DEKpk3 is 0101000110100010000

1010011100110. Then node ID3 extracts the first 16 bits of

DEKpk3 as the new group key. Obviously, the first 16 bits

equal to the new group key DEK.

3.6.4 Validation of rekeying in leaving event

When a node is leaving, the KDC generates a new group

key and sends the encrypted group key to the rest nodes.

The validation of group key distribution has been described

in Sects. 3.6.2 and 3.6.3.

3.6.5 Validation of KDC election algorithm

In theKDCelection algorithm, the challenger encrypts its IDby

eachother nodes’ public keyand sends it to them.Suppose node

ID2 is the challenger, it encrypts ID2 by using the public key

G3verify . As the plaintext length is 16 bits, we use the first 16 bits

of HID2 as the identity of node ID2. Set the error vector to be

e ¼ 110000000000000000 00000000000001. Therefore, the

ciphertext is ðID2Þpk3 ¼ 1011 0100010100000100000101111

111. Node ID3 obtains the 16 bits plaintext ‘0111010001

010000’ after decoding the ciphertext. Then it compares it with

thefirst 16bits ofHID2. The result is true, so thenode ID3 keeps

salience. Normally, the results obtained by all the group

members are true. Thus, node ID2 will be the new KDC.

4 Security analysis

In this section, the security of McEliece public key gen-

eration scheme, backward and forward secrecy and collu-

sion attack are analyzed.

4.1 Key recovery attack

In this work, we designed a verifiable public key generation

scheme using McEliece cryptosystem. The core of the

security is that weather the attacker can work out the pri-

vate key from the public information. The public infor-

mation for each node i includes si, ri and hi;1.

Theorem 1 The probability that deduces the private key

from published parameters is negligible if the block size of

the generator sub-matrix is larger than 512 bits.

Proof As the McEliece cryptosystem has been proved

security with property parameters. Thus the security of

public key generation scheme depends on the security of

the private key. There are two approaches to obtain the

private key Hi: guessing Hi directly or computing the secret

vector hi;2 and hi;3 from known information. For the first

method, the probability that guessing Hi correctly is shown

in formula (13):

PH ¼ 1

n
w


 � ð13Þ

When r ¼ 160, the probability PH is about 2�198:46. The

probability PH increases to 2�471:21 when r ¼ 512. The

work fact for this method is increasing exponentially with

the increase of block size r.For the second method, the

attacker needs to work out Hi;2 and Hi;3 from H�1
i;2 Hi;3.

Suppose that h�1
i;2 ¼ x1; x2; . . .; xrð Þ, hi;3 ¼ y1; y2; . . .; yrð Þ

and the first column of H�1
i;2 Hi;3 is z1; z2; . . .; zrð Þ. The work
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that computes Hi;2 and Hi;3 from H�1
i;2 Hi;3 equals to solve

the equation set as formula (14):

x1y1 þ x2yr þ � � � xry2 ¼ z1
xry2 þ x1y1 þ � � � xr�1y3 ¼ z1

..

.

x2yr þ x3yr�1 þ � � � x1y1 ¼ z1

..

.

x1yr þ x2yr�1 þ � � � xry1 ¼ zr
xry1 þ x1yr þ � � � xr�1y2 ¼ zr

..

.

x2yr�1 þ x3yr�2 þ � � � x1yr ¼ zr

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð14Þ

In the r equations which equal to zi (i 2 1; 2; � � � ; rf g), the
addends of the left part are shifted cyclically. Thus the

formula (14) can be denoted as formula (15):

x1y1 þ x2yr þ � � � xry2 ¼ z1
x1y2 þ x2y1 þ � � � xry3 ¼ z2

..

.

x1yr þ x2yr�1 þ � � � xry1 ¼ zr

8

>

>

<

>

>

:

ð15Þ

Obviously, the equation set has no solution because only zi
is known. Thus the only way to obtain Hi;2 and Hi;3 from

H�1
i;2 Hi;3 is that guessing Hi;2 and Hi;3 separately. For a

n; r;wð Þ-QC-MDPC code, Hi;2 and Hi;3 are r � r quasi-

cyclic matrixes. When m ¼ 2, the probability that guessing

Hi;2 and Hi;3 correctly is shown as formula (16):

Ph ¼
1

r
ffiffiffiffiffiffiffiffiffi

w=23
p


 �

r
w=2


 � ð16Þ

When w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

=2 and.r ¼ 512, the probability Ph is

2�106:40. The probability will decrease with the increasing

of code length. It decreases to 2�166:06 when r ¼ 1024.

When w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

, the probability Ph increases to 2
�177:37

and 2�267:13 correspondingly.Thus, in both of the two

conditions, the work factor that computes the private key

from known information is higher than 280 when r� 512.

The security level is much higher than 2128 when r� 1024.

4.2 Information set decoding (ISD) attack

ISD attack is a critical message recovery attack against

McEliece cryptosystem based on QC-MDPC code [35].

The work fact of ISD is shown as formula (17):

WF ¼

n
t


 �

n� k � l
t � p


 �

k þ l
p


 � ð17Þ

Here, l and p are parameters which relate to the code

length n, t ¼ n=w is the maximum weight of the error

vector e. We compute the minimum work fact and key size

for different McEliece cryptosystems. In the proposed

scheme, we set p = 4 and l ¼ 0:013n so that the work fact

is optimal. The results are shown in Table 1.

From Table 1, we can see that the proposed scheme is

secure when the block size r� 1024. The security is

improving with the increase of the code length. Though the

LDPC-based McEliece cryptosystem proposed in [32] is

more secure, its key size is 10–300 times that of the pro-

posed scheme.

Therefore, the proposed scheme is more suitable for

space key management. In order to achieve higher level

security against both key recovery attack and ISD attack,

the block size should larger than 1024 bit.

4.3 Backward secrecy and forward secrecy

Backward secrecy is used to prevent the new member from

decrypting messages exchanged before it joined the group.

In this work, the group key will be updated by the KDC

when a new member joins. The parameters a1 and a2 are

randomly chosen by KDC to generate the new group key.

Suppose that the old group key is DEKold and the new

group key is DEKnew. The message exchanged before new

member jointed denotes as EDEKold
Mð Þ. As the new member

only has a new group key DEKnew. The decryption process

of the new member is shown in formula (18):

M0 ¼ DDEKnew
ðEDEKold

Mð ÞÞ ð18Þ

Here DDEKnew
Xð Þ denotes the decryption of X by using

secret key DEKnew. It is obvious that the new member

Table 1 The ISD work fact for different McEliece cryptosystem

Schemes ISD work fact Key size (kB)

Proposed (2048,1024,40)-QC-MDPC with t ¼ 104 281:82 0.128

Proposed (9602,4801,63)-QC-QMDPC with t ¼ 148 2130:13 0.6

Proposed (22054,11027,103)-QC-QMDPC with t ¼ 214 2192:12 1.378

LDPC-based McEliece cryptosystem with (1024,64,12,30,70,4) Ref [32] 2172 30
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cannot decrypt EDEKold
Mð Þ correctly, since the properties of

hash function guarantees DEKnew 6¼ DEKold . Thus the

proposed scheme keeps backward secrecy.

Forward secrecy is used to prevent the leaving member

from decrypting the group’s communication. In this work,

the group key will be updated by KDC as soon as the

member leaving. The leaving member cannot decrypt the

messages because KDC does not send the new group key to

it. Therefore, the proposed scheme holds backward secrecy

and forward secrecy in key management.

4.4 Collusion attack

Collusion attack is that the evicted members work together

and share their individual pieces of information to compute

the new group key. Suppose that the leaving node ui col-

lects all other leaving nodes’ group keys, which denote as

DEKk; k ¼ 1; 2; � � � ; t � 1f g. In this work, the group key is

generated by using DEK ¼ hash a1; a2ð Þ. Thus we can

obtain formula (19):

DEKk ¼ hash a1k; a2kð Þ; k 2 1; 2; � � � ; t � 1f g
DEKc ¼ hash a1c; a2cð Þ

�

ð19Þ

Here, DEKc is the new group key, the parameters a1c
and a2c are randomly chosen by KDC. From the properties

of hash function, we can obtain formula (20):

DEKc 6¼ DEKk; k 2 1; 2; � � � ; t � 1f g ð20Þ

The old group keys DEKk are useless to compute the new

group key DEKc. Thus the proposed scheme can resist

collusion attack.

5 Efficiency analysis

In this section, we compared our scheme with four other

key management schemes in terms of storage, computation

cost, communication cost, interaction rounds and robust-

ness. The four key management schemes are LKH [8],

AGKM [16], the scheme proposed in [19] which is denoted

as CGKEP and the scheme proposed in [25] which is

denoted as DEKM. Furthermore, we simulated the error

correction capacity of the proposed group key distribution

scheme over a noisy channel. In order to facilitate com-

parison, some parameters are given below: K denotes a unit

of key and key material, N denotes the number of the group

member.

5.1 Storage cost

In the LKH scheme, the KDC keeps all of the logic keys

while each member keeps keys from the leaf node to the

root node in LKH tree. Thus the storage cost of KDC is

2N � 1ð ÞK. Each member needs to store ðlog2 N þ 1ÞK
keys. The storage cost of the root member in the AGKM

scheme is 2N � 1ð ÞK while the leaf member is

ðlog2 N þ 1ÞK. In the CGKEP scheme, each node needs to

store a master share and a pairwise shared key. So the

storage cost is 2K. The DEKM scheme is a fully distributed

key management. The initiator will exit and delete all of

the key materials after the initialization of the network.

Hence the remaining nodes need to store their public–pri-

vate key pairs, witness value and pairwise key. The storage

cost is 4K. In this work, in order to verify the other nodes

and elect new KDC, all of the nodes need to store its

public–private key pairs, the group key and N � 1ð Þ other
nodes’ public keys. So the storage cost of the proposed

scheme is N þ 3ð ÞK. The comparison is shown in Table 2.

As shown in Table 2, the storage cost of the proposed

scheme higher than the decentralized key management

schemes. However, the character of centralized key man-

agement determines that its storage cost is higher than the

decentralized key management. The storage cost of the

proposed scheme is lower than the traditional centralized

key management schemes such as LKH and AGKM. Fur-

thermore, it decreases the storage cost of KDC as much as

half of the original.

5.2 Computation cost

In the LKH scheme, in initialization, the KDC needs to

compute 2N � 1 keys for logistical and terminal nodes.

The KDC needs 3 log2 N encryption operations and log2 N

Hash operations when a member is joining. The members

need log2 N þ 1 decryption operations. When a member is

leaving, the KDC needs to encrypt 2 log2 N keys for

rekeying whiling the members need only log2 N decryption

operations. In the AGKM scheme, the new member needs

to do 2 N � 2ð Þ modular exponentiations in the member

joining event. When a member is leaving, all the non-

leaving members need to update the public keys from the

leaf node to the root node. The maximal number of mod-

ular exponentiation in this event is 3N � log2 N � 4. In the

CGKEP scheme, the computation cost of all members in

Table 2 Comparison of storage cost for different key management

schemes

Scheme KDC Member

Proposed scheme N þ 3ð ÞK N þ 3ð ÞK
LKH Ref [8] 2N � 1ð ÞK ðlog2 N þ 1ÞK
AGKM Ref [16] 2N � 1ð ÞK ðlog2 N þ 1ÞK
CGKEP Ref [19] – 2K

DEKM Ref [25] – 4K
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initialization is N þ 3. In the member joining event, the

computation cost of each member is N þ 3. The initiator

needs N þ 2 operations to generate the group key and

encrypts it. When a member is leaving, only the initiator

needs to compute a new group key and sends it to each

group. Its computation cost is N þ 2. In the DEKM

scheme, the initiator needs 3N operations in initialization.

Each member needs N þ 1 operations to compute a witness

value and verify the other members’ public key. In a

member joining event, the computation cost of the new

member is 3. As this scheme is designed to support point to

point communication, there is no need to consider the

member leaving. In this work, KDC and each member need

to compute the witness value, public–private key pairs of

itself and the public key of other members in the initial-

ization. The computation cost is N þ 2. When a new

member is joining, the KDC needs to encrypt the new

group key with each member’s public key and send it to

them. Both KDC and other members need to compute the

new member’s public key and verify it. So the computation

cost of KDC is N þ 3. The computation cost of each

member is 2. When a member is leaving, the KDC needs to

generate a new group key. Then encrypt the new group key

with each member’s public key and send it to them. It’s

computation cost is N. The comparison is shown in

Table 3.

The total computation cost of the proposed scheme is

compared with other schemes. The number of nodes is

changing from 1 to 500. For convenience, the computation

cost is transformed into logarithmic form base 2. The result

is shown in Fig. 2.

From Fig. 2 we can see that the total computation cost

of the proposed scheme is lower than AGKM and CGKEP

but higher than LKH. It approximately equals to the

computation cost of DEKM. This is because both of them

provide public key generation and verification. Though the

LKH takes lower computation cost, it neither generates a

public key for members nor provides verification.

5.3 Message cost

In the LKH scheme, in initialization, the KDC needs to

send N keys to terminal nodes. When a member is joining,

the new keys must be sent to the members by using

Oð2 log2 NÞ multicasts and Oðlog2 NÞ unicasts. So it’s

message cost is Oð3 log2 NÞ. In the leaving event, there are

Oð2 log2 NÞ keys need to be updated. So its message cost is

Oð2 log2 NÞ. In the AGKM scheme, in the initialization,

each member needs to send a secret value to KMC and the

KMC issues a public encryption key set with size of O Nð Þ.
The total number of message is Oð2NÞ. There are

Oðlog2 NÞ keys need to be updated in the member joining

event. So its message cost is Oðlog2 NÞ. When a member is

leaving, it only needs to send its decryption key to other

members. Thus its message cost is Oðlog2 NÞ. In the

CGKEP scheme, each member needs to generate sub-

shares for other members and publish a witness value in

initialization. Also, the initiator needs to send a group key

to the members of the sub-group in which there are l

members. So its message cost is O N2 þ lð Þ. In the member

joining event, the new member and the other members

need to register with each other. Then the initiator sends

the new group key to each group member. So its message

cost is O 3N þ lð Þ. When a member is leaving, only the

Table 3 Comparison of

computation cost for different

key management schemes

Scheme Initialization Joining Leaving

KDC Member KDC Member KDC Member

Proposed Scheme N þ 2 N þ 2 N þ 3 2 N –

LKH Ref [8] 2N � 1 – 4 log2 N log2 N þ 1 2 log2 N log2 N

AGKM Ref [16] – – 2 N � 2ð Þ 2 N � 2ð Þ 3N � log2 N � 4 3N � log2 N � 4

CGKEP Ref [19] N þ 3 N þ 3 N þ 2 N þ 3 N þ 2 –

DEKM Ref [25] 3N N þ 1 – 3 – –
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initiator needs to send the new group key to each group

member. Its message cost is O lð Þ. In the DEKM scheme,

the message cost of the initiator is O 2Nð Þ in initialization.

Each member needs to send O Nð Þ messages to verify their

public key. In the joining event, the new node needs to send

O 3tð Þ messages to obtain t master shares and t partial

private key shares from its neighbors. In this work, the

DKC publishes each member’s public key parameter and

sends the group key to them in initialization. Each member

publishes its witness value so that it can be verified. So the

total message cost is O 3Nð Þ. In member joining event, the

KDC sends a random vector to the new member and the

new member publish its witness value. After verification,

the KDC sends the new group key to each member. Its

message cost is O Nð Þ. When a member is leaving, the KDC

only needs to send new group key to each member. So the

message cost is O Nð Þ. The comparison of the message cost

is shown in Table 4.

The comparison of messages cost for different schemes

is shown in Fig. 3.

The result shown in Fig. 3 implies that the message cost

of the proposed scheme is higher than classical centralized

schemes but lower than the decentralized schemes. The

reason is that the proposed scheme takes a large number of

messages to generate and verify the public key. However,

the traditional centralized schemes such as LKH and

AGKM only provide group key management. Their secu-

rity of group key distribution is granted by the extra

cryptosystem. So the proposed scheme achieves higher

robustness and security by sacrificing the message cost.

To justify the efficiency analysis, we compared the

proposed scheme with other key management schemes by

the specified space network scenario. Let N = 100 and

K = 1 KB, l ¼ 10 and t ¼ 2N=3. The result is shown in

Table 5.

From Table 5, we can see that the storage overhead of

the proposed scheme is lower than traditional centralized

key management schemes and its message cost is lower

than distributed key management. Though the computation

cost and message cost of the proposed scheme are higher

than LKH, it provides authentication, public key manage-

ment, group key management, error correction and KDC

election. While the LKH, AGKM and CGKEP only pro-

vide group key management.

5.4 Interaction round and robustness

The interaction round is another indicator to estimate the

key management scheme. In the LKH scheme, only one

round of interaction is needed in both joining and leaving

event. In the AGKM scheme, one round of interaction is

needed in all phases of initialization, member joining and

member leaving event. In the CGKEP scheme, at the ini-

tialization stage, it needs one round of interaction in GMS,

two rounds of interaction in VMS and one round of

interaction in TGK. When a member is joining or leaving,

it needs only one round of interaction to transmit the secret

group key. In the DEKM scheme, it needs four rounds to

initialize the scheme. When a member is joining, it needs

two rounds to complete the verification and key generation

for the new member. In this work, only one round is needed

in the initialization, joining event and leaving event. The

DEKM scheme and the proposed scheme are robust against

single-point failures, while other schemes are vulnerable.

The comparison is shown in Table 6.

From Table 6 we can see that the proposed

scheme provides tolerance of single-point failure with

lower interaction rounds. Though LKH and AGKM have

lower interaction rounds, they are unavailable if the KDC

is failed.

5.5 Error correction capacity

The group key is usually encrypted to guarantee security

during its distribution. In this work, we encrypted the group

Table 4 Comparison of the message cost for different key manage-

ment schemes

Scheme Initialization Joining Leaving

Proposed scheme O 3Nð Þ O Nð Þ O Nð Þ
LKH Ref [8] O Nð Þ Oð3 log2 NÞ Oð2 log2 NÞ
AGKM Ref [16] O 2Nð Þ Oðlog2 NÞ Oðlog2 NÞ
CGKEP Ref [19] OðN2 þ lÞ O 3N þ lð Þ O lð Þ
DEKM Ref [25] O 3Nð Þ O 3tð Þ -
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key by using McEilece cryptosystem based on QC-MDPC

code. We simulated the error correction capacity of the

proposed group key distribution scheme over the noisy

channel, in which the group key is encrypted by the

McEliece cryptosystem based on 2048; 1024; 40ð Þ QC-

MDPC. The channel type is binary additive white Gaussian

noise (AWGN) channel and the noise power

Pnoise ¼ Psig=SNR. Here, Psig is the signal power, SNR is

the Signal to noise ratio. SHA-3 is used to map the identity

to hIDi
. Hi;1 is generated by using formula (3). The other

parameters such as hi;2, hi;3 and si used in the proposed

scheme are generated randomly. The Hamming weight of

the generated QC-MDPC code is 40. Furthermore, we

compared the bit error rate (BER) of the proposed

scheme with the key management scheme which encrypted

the group key by using AES. The result is shown in Fig. 4.

From Fig. 4, we can see that the BER of the proposed

scheme reduced to 0 when the single noise rate (SNR) is

higher than 5 while the BER of AES is always approxi-

mately 0:5. As the message is binary, a BER equals to 0.5

implies that the decoded message is always incorrect. This

means that the proposed scheme can correct all of the

errors in the received keys when SNR� 5, while the clas-

sical key management always obtains error keys. Further-

more, the error correction capacity is increasing with the

increase of code length. Thus the proposed scheme can

resistant channel noise and improve the success of key

distribution greatly.

From the above, we can conclude that the proposed

scheme provides high security and robustness with lower

computation cost and rounds. As a centralized key man-

agement scheme, the storage of our scheme is lower than

Table 5 Comparison of the efficiency for different key management schemes

Scheme Storage cost (KB) Computation cost (operation) Message cost (KB)

KDC Member Initialization Joining Leaving Initialization Joining Leaving

Proposed scheme 103 103 204 105 100 300 100 100

LKH Ref [8] 199 7 199 36 21 100 21 14

AGKM Ref [16] 199 7 – 392 578 200 7 7

CGKEP Ref [19] – 2 206 205 102 10010 310 10

DEKM Ref [25] – 4 401 3 – 300 200

Table 6 Comparison of

interaction round and robustness
Scheme Interaction round Tolerance of

single-point failure
Initialization Joining Leaving

Proposed scheme 1 1 1 Y

LKH Ref [8] 1 1 N

AGKM Ref [16] 1 1 1 N

CGKEP Ref [19] 4 1 1 N

DEKM Ref [25] 4 2 0 Y

2 2.5 3 3.5 4 4.5 5 5.5

SNR(db)

0

0.1

0.2

0.3

0.4

0.5

0.6

B
E

R

BER of proposed scheme
BER of AES

Fig. 4 Comparison of BER of key distribution schemes over noisy

channel
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the classical centralized key management schemes such as

LKH and AGKM. Though the computation cost and mes-

sage cost of the proposed scheme are higher than LKH-

based schemes, it is capable of KDC failure tolerance

which overcomes the critical flaw of centralized key

management schemes. Secondly, it provides authentica-

tion, public key management and group key management

simultaneously while the traditional schemes provide only

group key management. Furthermore, it can correct the

errors caused by the noise so that the efficiency of key

distribution is improved vastly. Thus the proposed

scheme has a significant advantage against the other cen-

tralized key management schemes in space networks.

6 Conclusions

In this work, we proposed a novel centralized identity-

based key management scheme by using McEliece public

key cryptosystem for space network to resist the distur-

bance of nonlinear channel noise. The KDC generates each

member’s public and private key by using McEliece public

key cryptosystem. The group key is encrypted by the

node’s public key to ensure both security and reliability.

The identity of space nodes is used as a partial parameter of

the nodes’ public key to provide authentication. The hash

function is employed to keep the forward and backward

secrecy of the group key management. The elect mecha-

nism is designed so that the robustness of the proposed key

management is enhanced drastically. It can overcome the

critical flaw that the traditional centralized key manage-

ment schemes are unavailable when the KDC is failed.

Furthermore, the pseudorandom noise of the channel can

be transferred to enhance security. The comparison of the

proposed scheme with other schemes shows that our

scheme has higher security and robustness, lowest storage

cost and lower interaction rounds. Thus the proposed key

management scheme is suitable in space networks for its

excellent security, reliability and efficiency.
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